This project aims at implementing basic algorithms for finding rational points on varieties. Classically algebraic variety is defined as the set of solutions of polynomial equations over a number field. A rational point of an algebraic variety is a solution of set of equations in the given field (rational field if not mentioned). Much of the number theory can be viewed as the study of rational point of algebraic varieties. Some of the great achievements of number theory amount to determining the rational points on particular curves. For example, Fermat’s last theorem is equivalent to the statement that for an integer n ≥ 3, the only rational point of the curve xn+yn=zn in P2 over Qare the obvious ones. Common variants of these question include determining the set of all points of V(K) of height up to some bound. The aim of this project is to implement some basic rational point finding algorithms (sieving modulo prime and Doyle Krumm Algorithm) and extend these to product_projective_space scheme.